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Dynamics and clinical relevance of maternal
mRNA clearance during the oocyte-to-embryo
transition in humans
Qian-Qian Sha 1,6, Wei Zheng2,3,6, Yun-Wen Wu4, Sen Li1, Lei Guo1, Shuoping Zhang2, Ge Lin 2,5✉,

Xiang-Hong Ou 1✉ & Heng-Yu Fan 4✉

Maternal mRNA clearance is an essential process that occurs during maternal-to-zygotic

transition (MZT). However, the dynamics, functional importance, and pathological relevance

of maternal mRNA decay in human preimplantation embryos have not yet been analyzed.

Here we report the zygotic genome activation (ZGA)-dependent and -independent maternal

mRNA clearance processes during human MZT and demonstrate that subgroups of human

maternal transcripts are sequentially removed by maternal (M)- and zygotic (Z)-decay

pathways before and after ZGA. Key factors regulating M-decay and Z-decay pathways in

mouse have similar expression pattern during human MZT, suggesting that YAP1-TEAD4

transcription activators, TUT4/7-mediated mRNA 3ʹ-oligouridylation, and BTG4/CCR4-

NOT-induced mRNA deadenylation may also be involved in the regulation of human maternal

mRNA stability. Decreased expression of these factors and abnormal accumulation of

maternal transcripts are observed in the development-arrested embryos of patients who seek

assisted reproduction. Defects of M-decay and Z-decay are detected with high incidence in

embryos that are arrested at the zygote and 8-cell stages, respectively. In addition, M-decay

is not found to be affected by maternal TUBB8 mutations, although these mutations cause

meiotic cell division defects and zygotic arrest, which indicates that mRNA decay is regulated

independent of meiotic spindle assembly. Considering the correlations between maternal

mRNA decay defects and early developmental arrest of in vitro fertilized human embryos, M-

decay and Z-decay pathway activities may contribute to the developmental potential of

human preimplantation embryos.
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Maternal-to-zygotic transition (MZT) is an initial step in
the early development of all investigated animal species;
during MZT, transcripts of maternal genes are removed

by degradation and the zygotic genome is activated1,2. The exact
mechanisms by which the maternal mRNAs are degraded during
MZT is a long-standing question in reproductive and develop-
mental biology. Genetic and high-throughput sequencing studies
on model systems, including Drosophila, zebrafish, and Xenopus,
have indicated that the elimination of maternal transcripts is
accomplished by two sequential pathways: the first pathway is
entirely mediated by maternal factors accumulated in the mature
oocytes and is thus termed maternal (M)-decay; the second
pathway depends on de novo zygotic transcription products after
fertilization and is thus termed zygotic (Z)-decay3–5.

Significant progress has recently been made in understanding
the regulation of mRNA stability in mammalian oocytes and
zygotes. CNOT6L, which is a catalytic subunit of CCR4-NOT
deadenylase, and its associated zinc finger protein 36-like 2
(ZFP36L2) protein were found to be essential for mRNA decay
that accompanies oocyte meiotic maturation6–8. The B-cell
translocation gene-4 (BTG4), which is an oocyte-specific adap-
ter protein of CCR4-NOT, was identified as an MZT-licensing
factor in mice that mediated mRNA clearance prior to ZGA9–11.
These mechanisms comprise the currently known M-decay
pathway in mice. In addition, terminal uridine transferase-4
and terminal uridine transferase-7 (TUT4/7)-mediated mRNA
degradation not only maintained homeostasis of the maternal
transcriptome during oogenesis, but also facilitated Z-decay in
murine preimplantation embryos12,13. The maternal transcrip-
tional coactivator YAP1 and its co-transcription factor TEAD4
were found to trigger the transcription of early zygotic genes, such
as Tut4/7, and possibly genes encoding other unidentified mRNA
destabilizers14,15. Further, these mechanisms comprise key com-
ponents of the murine Z-decay pathway. Despite these findings in
model animals of lower-level species, the dynamics of mRNA
decay and mechanisms that govern stepwise maternal mRNA
clearance during MZT in humans remain unclear.

Human preimplantation embryogenesis is a remarkably com-
plicated, well-orchestrated process that relies on synchronization
of oocyte maturation and zygotic genome activation (ZGA)16,17.
Despite extensive research on murine as well as human oocytic
and embryonic transcriptomes in recent years, many questions
regarding key MZT events in humans remain unanswered18. For
instance, in assisted human reproduction, the extent of cyto-
plasmic maturation of an oocyte is considered a determining
factor for its developmental potential after fertilization19,20.
However, whether the appropriate maternal mRNA degradation
contributes to the cytoplasmic maturation of human oocytes and
their developmental potential after in vitro fertilization (IVF)
remains unclear. In addition, unlike mouse embryos, in which
major ZGA is initiated at the 2-cell stage, human embryos
undergo major ZGA at the 8-cell stage21,22. The proportion of
human maternal transcripts with clearance that is ZGA-
dependent remains undetermined. From a broader perspective,
dysregulation of the maternal mRNA clearance process may be
related to various disorders of the reproductive system, such as
follicle growth retardation, oocyte maturation defects, early
embryo arrest, oocyte aging, and ultimately, infertility6,9,12,23,24.
Thus, investigating the stability regulation of maternal mRNAs
during human MZT may facilitate the understanding of asso-
ciated physiological, as well as pathological processes.

TUBB8 is a primate-specific β-tubulin isotype, the expression
of which is confined to oocytes and the early embryo25. TUBB8
variants are genetic determinants of human oocyte maturation
arrest that cause variable and mixed phenotypes in oocyte
maturation and early embryo development26,27. However,

whether the process of oocyte maturation-associated maternal
mRNA decay was also disturbed in these mutated zygotes is
unclear. In this study, we define and characterize the ZGA-
dependent maternal mRNA clearance process during human
MZT and demonstrate that subgroups of the human maternal
transcripts are sequentially removed by M-decay and Z-decay
pathways before and after ZGA. We also evaluate the association
of maternal mRNA degradation defects with zygotic develop-
mental arrest due to TUBB8 mutations or unidentified reasons.
These investigations aim to provide insight into the dynamics,
functional importance, and pathological relevance of maternal
mRNA decay during human MZT.

Results
Patterns of maternal mRNA degradation in human oocytes
and embryos. To identify patterns of maternal mRNA degrada-
tion during MZT in humans, we analyzed the degradation
dynamics of human maternal mRNAs in GV oocytes, zygotes, and
8-cell embryos using published RNA-seq data (GSE101571)28. As
illustrated in Fig. 1a, ZGA occurs at the 4–8-cell stage in the
human embryo. Maternal mRNAs with reliable sequence anno-
tations and with fragments per kilobase of transcript per million
reads mapped (FPKM) of >2 at the GV stage (7271 genes) were
selected. Those with significant decreases in mRNA levels between
two stages at a magnitude of more than 2-fold were considered
degraded maternal mRNAs and were classified into four clusters
according to their degradation patterns: Cluster I (2372 genes),
degraded from the GV stage to the zygote stage, and stable after
fertilization; Cluster II (2259 genes), degraded from the zygote
stage to the 8-cell stage; Cluster III (1109 genes), continuously
degraded from the GV stage to the 8-cell stage; and Cluster IV
(1531 genes), stable during MZT (Fig. 1a, b). To assess whether all
Cluster IV transcripts remained stable beyond the 8-cell stage or if
a subset of transcripts were degraded after this timepoint, we also
analyzed transcript levels at the morula stage (Fig. 1c). This ana-
lysis indicated that only 176 of the 1531 Cluster IV transcripts
were, in fact, degraded between the 8-cell and morula stage. The
majority of Cluster IV transcripts remained stable between the 8-
cell and morula stage. In human embryos, zygotic transcription
activity is first detected at the 4-cell or 8-cell stage; thus, maternal
mRNAs in Clusters II and III were considered candidates for
ZGA-dependent decay, or Z-decay; further, Cluster I was con-
sidered a candidate for a maternally encoded mRNA decay
pathway that acts before ZGA and is defined as M-decay.

We then asked whether maternal mRNA degradation in
human embryos after fertilization depends on ZGA. Both in vitro
controls and α-amanitin-treated human zygotes successfully
developed to the 8-cell stage (Fig. 1a). These 8-cell embryos
were collected for RNA-seq analysis. Significantly, transcripts of
Clusters II and III were stabilized in α-amanitin-treated embryos
(Fig. 1d). However, α-amanitin treatment only blocked the
degradation of nearly half of the transcripts of Clusters II and III
in mice. Thus, a ZGA-dependent mRNA decay pathway was
found to operate during human MZT, in which it played a more
important role than in mouse MZT.

In mice, long 3ʹ-UTRs and high translational activity of Z-
decay mRNAs conferred resistance to CCR4-NOT-mediated
deadenylation during MZT, which showed that the length of
the 3ʹ-UTR is also a factor that determines mRNA stability29,30.
We also observed in the human transcriptome that: (1) M-decay
transcripts possessed shorter 3ʹ-UTRs compared to Z-decay
transcripts (Fig. 1e); (2) When multiple cytoplasmic polyadenyla-
tion element (CPE) and polyadenylation signal (PAS) were
present in the 3ʹ-UTR of mRNAs, they contributed to mRNA
translation in an additive manner during oocyte maturation in
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mice. Similarly, we found that, in humans, the numbers of CPEs
and PASs were present in the 3ʹ-UTRs of Z-decay mRNAs at 2
folds compared to those in the 3ʹ-UTRs of M-decay mRNAs
(Fig. 1f).

Comparisons of human and mouse transcriptomes during the
MZT. To demonstrate the differences between human and mouse
maternal transcriptomes, we directly compared the transcripts in
human and mouse GV oocytes. This revealed that only half of the
transcriptomes were overlapping (Fig. 2a), indicating that the
homology between human and mouse maternal transcriptomes is
low. Even fewer zygotically activated genes were shared by mouse
2-cell embryos and human 8-cell embryos (Fig. 2a). Maternal
mRNAs were classed into four clusters according to the level
change during MZT. We made comparisons of these four groups
between mouse and human since they may utilize the same

mechanisms for maternal mRNA decay. Despite these four
clusters being defined by similar criteria, the genes in each cluster
were significantly different in human and mouse (Fig. 2b).
Examples in Fig. 2c, d shows that some human M-decay tran-
scripts were degraded by Z-decay pathways in mouse, and vice
versa. Therefore, subsets of human mRNA might be regulated
differently from mouse during the MZT.

Classification of maternal mRNA degradation in human
embryos. To verify the RNA-seq data regarding mRNA dynamics
during MZT in human embryos, we collected oocytes (GV and
MII) and preimplantation embryos at the 8-cell and morula
stages from volunteers (25–35 years old) for RNA extraction and
quantitative RT-PCR (RT-qPCR). We detected levels of tran-
scripts that were shown to be targets of BTG4 and CNOT6L in
mice and were eliminated during oocyte meiotic maturation, i.e.,
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M-decay. Single cell RT-qPCR results showed that these tran-
scripts were also degraded during the GV-to-MII transition in
human oocytes (Fig. 3a). Furthermore, the levels of these M-
decay transcripts were comparable in MII oocytes and in zygotes,
suggesting that degradation of these transcripts was largely
completed by the MII stage and there is no significant degrada-
tion during the MII-to-zygote transition (Fig. 3a). Some tran-
scripts that were eliminated by Z-decay were stable before
fertilization and were degraded at the 8-cell stage (Fig. 3b). As in
mice, the delayed removal of mRNAs encoding BTG4 and the
catalytic subunits (CNOT7 and CNOT6L) of CCR4-NOT dead-
enylase, as well as PAN2 RNA deadenylase, was also observed in
the human embryos: RT-qPCR and RNA-seq results showed that
these transcripts were relatively stable until the 4–8-cell stage
(Fig. 3c and d). BTG4 and CNOT7 proteins were undetectable in
GV oocytes before meiotic maturation, but accumulated in
maturing oocytes and in zygotes, as detected by immuno-
fluorescence (Fig. 3e). Then these proteins decreased to basal
levels at the 8-cell stage. This observation suggests that BTG4 and
CCR4-NOT may play roles in human maternal mRNA decay,
whereas they themselves were degraded until other maternal
mRNAs were eliminated.

We also examined the potential ZGA factors that were involved
in the Z-decay pathway in human embryos. The transcription
factor TEAD4 was zygotically expressed in mice and was required
for Z-decay in preimplantation embryos15,30. Similarly, TEAD4
transcription in human embryos was activated at as early as the 4-
cell stage, and its mRNA levels increased 4-fold from the 8-cell
stage to the morula stage, as determined by RNA-seq results
(Fig. 3f)28. In contrast, the mRNA levels of YAP1 were relatively
stable during MZT (Fig. 2f). Immunofluorescence results showed
that YAP protein evenly distributed in the human GV oocytes

and zygotes, but accumulated in the nuclei of 8-cell embryos
(Fig. 3g). The 3ʹ-terminal uridylyl transferase 4 and 7 (TUT4/7)-
dependent mRNA 3ʹ-oligouridylation in mice participated in
mRNA decay and sculpted the maternal transcriptome12. TUT7,
which is the downstream factor of TEAD430, was also expressed
in human oocytes at higher levels compared to TUT4, but
maternal TUT7 transcripts were removed during oocyte matura-
tion and fertilization. Nevertheless, transient expression of zygotic
TUT4/7 was detected from the 8-cell stage to the morula stage,
with TUT7 levels being higher than those of TUT4 (Fig. 3f). The
TUT7 expression levels peaked at the 8-cell stage and then rapidly
decreased at the morula stage. The expression window of the
human zygotic TUT4/7 gene overlapped with the time frame of
Z-decay.

The TUBB8 mutation did not affect M-decay in humans. In a
clinical context, normal embryos should develop at the 8-cell
stage 3 days after IVF31; however, there were embryos that were
fertilized, as evidenced by the formation of pronuclei, that
remained arrested at the 1-cell stage32. Zygotic arrest of some
embryos was due to gene mutations, such as TUBB8 mutations
that affect cell division33.

To investigate whether mRNA degradation was blocked by
TUBB8 mutation-induced cell cycle arrest, we microinjected
mRNA encoding mutated TUBB8 (TUBB8V255M, which is a
dominant negative mutant34) into mouse oocytes (Fig. 4a).
Consistent with the results of previous studies, oocytes that
overexpress TUBB8V255M had a GVBD rate similar to that of
control oocytes that overexpress wild-type TUBB8; however, the
PB1 emission rate of oocytes that overexpress TUBB8V255M was
significantly lower than that of the control group (Supplementary
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Fig. 1a). Oocytes that overexpress TUBB8V255M failed to assemble
bipolar spindles and were arrested at the pre-MI stage. Further,
chromosomes were not aligned at the equatorial plates (Fig. 4b).
Although 40% of TUBB8V255M-overexpressing oocytes were
found to release PB1 and reached the MII stage, they did not
assemble bipolar MII spindles (Fig. 4b). We then detected M-
decay of maternal mRNAs in these oocytes. RT-qPCR results
showed that degradation of indicated mRNAs was not affected,
regardless of whether the PB1 was released (Fig. 4c).

We also detected the M-decay of human mRNAs in zygotes
that were derived from TUBB8-mutated oocytes. Samples (1 and
2 from TUBB8V255M patients; 3 and 4 from TUBB8G308S patients)
were collected, as shown in Fig. 5a and b. RT-qPCR results
showed that the indicated mRNAs in the arrested zygotes
carrying maternal TUBB8 mutations were at comparable levels
with those in 3PN zygotes, suggesting that they are normally
degraded in maternal TUBB8 mutated zygotes (Fig. 5c and
Supplementary Fig. 1b). These observations are consistent with
those of previous reports suggesting that M-decay in mouse
oocytes is not affected by nocodazole-induced meiotic spindle
disruption35.

Collectively, these results indicated that the arrest of meiotic
cell division did not affect M-decay of maternal transcripts. If
mRNA degradation defects were found in some arrested human

embryos, these defects were not considered secondary conse-
quences of spindle assembly abnormalities of the oocytes.

M-decay was frequently impaired in development-arrested
human zygotes. To verify whether the defects of maternal mRNA
degradation were causes of human preimplantation embryo
arrest, we profiled the transcriptome of arrested 1-cell embryos
that were derived from seven mutation-unidentified (unid)
patients at day 3 after IVF. Since it is ethically difficult to collect
normal human zygotes for this specific experimental purpose and
since the TUBB8 mutation did not affect M-decay of known
maternal transcripts, arrested 1-cell embryos from two TUBB8-
mutated patients (V255M and G308S) were used as controls for
single-cell RNA-seq.

The gene expression levels were assessed by FPKM. A principal
component analysis revealed that two samples from TUBB8-
mutated patients had high correlations, and five out of seven
samples from unid-patients also had high correlations (Fig. 6a). A
heatmap also showed high correlations among five samples from
unid-patients (average r= 0.900; Supplementary Fig. 1c, f and
Supplementary Table 1), whereas these five samples were
significantly different from the two samples of TUBB8-mutated
patients (Fig. 6a, Supplementary Fig. 1c and Supplementary
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Table 1). These observations indicate that the five embryos from
unid-patients may have been arrested for the same reason, but
not due to meiotic division defects like the TUBB8-mutated
oocytes.

It was found that 3712 and 2493 transcripts were upregulated
and downregulated more than 2-fold in the five unid-patient
embryos with high transcriptome correlations (Fig. 6b, c). More
transcripts were upregulated than they were downregulated in
these embryos when we increased the thresholds of the analyses
(Fig. 6d, e). The #6 unid-patient also displayed remarkable
maternal mRNA accumulation, as more genes were upregulated
than they were downregulated in the embryos of this patient
compared to control embryos (Supplementary Fig. 1d). However,
relatively small numbers of transcripts in the #7 unid-patient
were upregulated or downregulated (Supplementary Fig. 1e), and
the numbers of upregulated and downregulated genes were not
very different (646 versus 494). Overall, mRNA clearance was
impaired in 6 of 7 unid-patients.

Since the transcriptomes of the #1–5 embryos had high
correlations, they were used for further analyses. Nearly 50%
(1490 in 3712) of the transcripts that were upregulated in the
unid-patient embryos should have been degraded in normal
embryos during the GV-to-zygote transition (i.e., Cluster I and III
of Fig. 1b) (Fig. 6f). Among mRNAs degraded in normal embryos
during the GV-to-zygote transition, only 1431 of 3179 were
degraded in unid-patient embryos (Fig. 6g); nearly 50% (1490/
3179) were stabilized in unid-patient embryos. In contrast, only
<10% (285/3179) were downregulated in unid-patient embryos.
We further performed gene ontology (GO) analyses on the
transcripts that are upregulated in the arrested embryos with fold
changes of >2. Transcripts that are related to translation-related
functions (red bars) and mRNA stability (green bars) were

enriched (Fig. 6h), and they may have caused over-translation of
the accumulated maternal mRNAs and led to cell division defects.

M-decay defects potentially cause embryo arrest in humans. To
further determine whether M-decay defects associated with early
embryo arrest in humans, we collected arrested zygotes from 4
TUBB8-mutated patients and 15 unid-patients and verified the
levels of known M-decay transcripts by RT-qPCR (Fig. 7a, b). The
mRNA levels of indicated transcripts were consistently low in the
samples from TUBB8-mutated patients (Fig. 7a, b). In zygotes
from 8 unid-patients (#1–8), at least 4 out of 6 detected tran-
scripts showed significant accumulation compared to that in the
maternal TUBB8-mutated zygotes, suggesting that M-decay was
defective (Fig. 7a and Supplementary Table 2). In contrast, in the
other 7 unid-patients (#9–15), these M-decay transcripts were not
synergistically upregulated, suggesting that these embryos were
arrested due to reasons other than M-decay defects (Fig. 7b and
Supplementary Table 2).

Recent studies have indicated that the oocyte-expressed MZT
licensing factor BTG4 mediates maternal mRNA degradation in
mouse oocytes and zygotes by recruiting the CCR4-NOT complex
to transcripts that undergo active translation9–11. Murine
CNOT6L, which is a CCR4-NOT catalytic subunit, is required
for meiosis-coupled maternal mRNA decay6. RT-qPCR results
indicate that the CNOT6L, CNOT7, and BTG4 expression was
significantly lower in human embryos that have M-decay defects
compared to that in TUBB8-mutated embryos, whereas the
decrease in CNOT6L, CNOT7, and BTG4 levels was less
remarkable in the arrested embryos of unid-patients without
M-decay defects (Fig. 7c, d and Supplementary Table 2). These
results suggest that similar to the mechanisms of the mouse MZT,
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BTG4 and CCR4-NOT may also participate in the M-decay
pathway of human embryos.

Human embryos with ZGA defects also have defects to remove
maternal transcripts through Z-decay. ZGA have been shown to
occur at the 8-cell stage in human embryos, but the association
between Z-decay and the developmental potential of early
embryos has never been assessed in human. In a clinical context,
normal embryos should develop into blastocysts 5 days after IVF.

However, some embryos reached the 8-cell stage but fail to form
blastocysts. Thus, we compared the transcriptomes of normal and
8-cell stage-arrested human embryos. Morphologically normal
embryos at the 1-cell and 8-cell stages were collected. The 8-cell
arrested embryos at day 5 after IVF were separately collected
from six patients who experienced repeated developmental failure
of preimplantation embryos after IVF (Fig. 8a, b). Individual
normal and arrested embryos were subjected to single-embryo
RNA-seq analyses, and the gene expression levels were assessed
by FPKM.
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All three normal embryo samples at the 1-cell or 8-cell stages
had high correlations following principal component analysis,
whereas 4 (#1, 4–6) of 6 arrested 8-cell embryos had high
correlations (Fig. 8c). A heatmap also showed that these four
samples had high correlations (average r= 0.748) and signifi-
cantly differed from three normal 8-cell embryos (Supplementary
Fig. 2a and Supplementary Table 3). In the following experiment,

RNA-seq results of these four samples were further compared to
those of normal embryos. There were 2968 and 5297 transcripts
that were downregulated and upregulated more than 2 folds in
arrested embryos when compared to normal 8-cell embryos
(Fig. 8d). When the threshold of the fold changes was increased to
5, there were more genes that were upregulated than those that
were downregulated (Fig. 8e and Supplementary Fig. S2b). In the
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arrested embryos #2 and #3, however, the numbers of upregulated
and downregulated genes were comparable (Supplementary
Fig. 2c, d). Thus, mRNAs were accumulated in the arrested
embryos #1, #4, #5, and #6.

A gene set enrichment analysis of the 2926 downregulated
transcripts in the arrested embryos revealed that 1373 of these
(~50%) belonged to early zygotically expressed genes of normal
embryos (Fig. 8f). Thus, ZGA was at least partially impaired in
these embryos. In addition, among the 4074 Z-decay transcripts
that were detected in normal embryos, 775 transcripts were
stabilized in the arrested embryos (Fig. 8g). Among these
transcripts, 223 belonged to the previously identified ZGA-
dependent Z-decay transcripts (Fig. 8g). A heatmap showed that
the changed transcriptomes of four arrested embryos were
consistently and significantly different from those of normal
embryos (Fig. 8h). Further, a GO analysis revealed that the genes
that failed to be expressed in arrested embryos were primarily
associated with genome transcription and mRNA splicing
(Fig. 8i). In contrast, the maternal transcripts that were
accumulated in the arrested embryos were associated with the
cell cycle, maternal behavior, and protein ubiquitination (Fig. 8j).
These results were consistent with the phenotype of the
prolonged 8-cell stage in these embryos.

Z-decay defects were detected in the early development arrested
human embryos. We next investigated whether the Z-decay
defects are frequently associated with the 8-cell arrest of human
embryos. Embryos that were arrested as 8-cell embryos were
separately collected at day 5 after IVF from 14 patients who
experienced repeated preimplantation developmental failure. In a
high proportion of these embryos, mRNA expression levels of the
key ZGA factor MYC (12/14) and Z-decay factors (10/14 for
TEAD4 and 9/14 for TUT7), except for TUT4, were significantly
lower than normal (Fig. 9a, b and Supplementary Table 4).
Although these 8-cell arrested embryos had developed 2 days
longer than the control embryos before RNA extraction, the
maternal transcripts that were known to be degraded through the
Z-decay pathway remained at higher levels in these embryos than
in the normal 8-cell embryos. These include factors that are
associated with the cell cycle (CENPJ), protein degradation (SKP1),
maternal mRNA degradation (CNOT7), and histone H3 methy-
lation (SUV39H2) (Fig. 9c, d and Supplementary Table 4)36–39.
These results indicate an association between the Z-decay of
maternal mRNAs and preimplantation developmental competence
of human embryos.

Inhibition of YAP–TEAD4 activity impaired TUT4/7 expres-
sion and Z-decay in mouse and human embryos. In the

following experiments, we aimed to repress the YAP–TEAD4
activity in early human embryos using verteporfin, a small
molecule that prevents the YAP–TEAD4 interaction, and then
determine if the zygotic expression of TUT4/7 and removal of Z-
decay transcripts were impaired. We first confirmed the effects of
verteporfin treatment in mouse. When GV oocytes were cultured
in medium containing 1 µM verteporfin, meiotic maturation were
as normal as the control group (Supplementary Fig. 3a, b), sug-
gesting that the molecule is not toxic at this concentration.
However, zygotes cultured at the presence of verteporfin had
lower developmental rates than the control zygotes, with sig-
nificant arrest at the 2–4-cell stages (Supplementary Fig. 3c, d). In
verteporfin-treated 2-cell embryos, expression of known
YAP–TEAD4 target genes, including Tut4/7, was repressed
(Supplementary Fig. 3e). Meanwhile, the known mouse Z-decay
transcripts accumulated in these embryos (Supplementary
Fig. 3f). These phenotypes were similar to those observed in
maternal Yap1 knockout or TEAD4-inhibited embryos, suggest-
ing that verteporfin effectively inhibited YAP–TEAD4 activity in
cultured embryos.

Next, we cultured human zygotes with 3PN in medium
containing verteporfin. The 3PN zygotes are usually caused by
polyspermic IVF and are ethically approved to be used for
research purpose. Approximately 40% 3PN zygotes developed to
the 8-cell stage, with or without verteporfin treatment (Fig. 10a).
These 8-cell embryos were collected for RT-qPCR analyses. The
results showed that TUT4/7 expression was repressed (Fig. 10b, c),
whereas representative Z-decay transcripts accumulated (Fig. 10d,
e) in the verteporfin-treated embryos. Therefore, YAP–TEAD4 is
likely to have a conserved function to trigger zygotic TUT4/7
expression as well as Z-decay transcript removal in both mouse
and human early embryos.

Discussion
Studies in model systems has shown that both maternal and
zygotic transcript degradation pathways are functional in the
early mouse embryo during MZT4,5,30. When M-decay was
impaired in mice, the embryos were arrested at the 1–2-cell
stages, whereas Z-decay is required for mouse embryo develop-
ment beyond the 4-cell stage30,40. However, whether mRNA
decay (including M-decay and Z-decay) also plays a key func-
tional role in human embryo development has not been investi-
gated until this study. Thus, maternal mRNA decay defects have
never been associated with early developmental arrest of human
embryos after IVF. The current data mainly provided correlative
rather than causal evidence that the factors facilitating mouse
maternal mRNA decay may also be involved in the regulation of
maternal mRNA stability during human MZT. Meanwhile, in
another study we have identified infertile women carrying BTG4

Fig. 6 Transcriptome analyses for developmental arrested human zygotes after IVF. a The principal component analysis (PCA) results of developmental
arrested zygotes 3 days after IVF. TUBB8mutant indicates zygotes of TUBB8-mutated patients; unid-patient indicates mutation-unidentified patients. b A
scatter plot is shown, which compares transcripts in arrested zygotes that were derived from TUBB8-mutated and unid-patients. Transcripts decreased or
increased more than 2 folds in unid-patient samples compared to TUBB8mutant samples, which are highlighted in blue and red, respectively. n gene number,
FC fold change; 1–5, embryos from different unid-patients. c Heatmap of genes upregulated or downregulated more than 2 folds in zygotes from unid-
patients compared to TUBB8mutant samples. The definition of Groups A and B is described in the text. d A scatter plot is shown, which compares transcripts
in arrested zygotes that were derived from TUBB8-mutated and unid-patients. Transcripts decreased or increased more than 5 folds in zygotes of unid-
patients compared to TUBB8mutant samples, which were highlighted in blue and red, respectively. n gene number; FC fold change; 1–5, represent embryos
from different unid-patients. e Numbers of transcripts that were upregulated (red) or downregulated (blue) in arrested zygotes derived from unid-patients
compared to those derived from TUBB8-mutated patients. f Venn diagram showing the overlap of upregulated transcripts in arrested zygotes of unid-
patients and the degraded transcripts from the GV-to-zygote transition in normal oocytes. P= 1e−122 by a two-tailed Student’s t-test. g Heatmap showing
the levels of M-decay transcripts (downregulated more than 2 folds from the GV stage to the zygote stage in normal samples (FPKM (GV)+ 1/FPKM
(zygote)+1) >2)) in arrested zygotes from TUBB8-mutated patients and unid-patients. h Gene ontology analysis of transcripts upregulated or
downregulated more than 2 folds in arrested zygotes derived from unid-patients compared to those from TUBB8-mutated patients.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18680-6 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:4917 | https://doi.org/10.1038/s41467-020-18680-6 |www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


mutations. The zygotes from these women were arrested at the 1-
cell stage and exhibited defects in maternal mRNA degradation.
The phenotypes were similar to those we have observed in Btg4
knockout mice41. The identification of BTG4 mutations in
infertile women supports our hypothesis that BTG4/CCR4-NOT-
induced mRNA deadenylation is involved in the regulation of
maternal mRNA stability during human MZT. Also consistent
with our working model, TUT4/7 expression and Z-decay of
maternal transcripts was impaired in human 8-cell embryos
derived from 3PN zygotes, when YAP–TEAD4 activity was
inhibited. These results provide evidence that YAP and TUT4/7
are likely regulating Z-decay of maternal mRNA during
human MZT.

In this study, oocyte and embryo transcriptomes of human and
mouse origin, as well as human embryo transcriptomes generated
by different groups were compared. The absolute FPKMs can
vary among different datasets due to differences in input RNA
quantity, the efficiency of reverse transcription, and detection
sensitivity. Furthermore, human samples obtained from the clinic
often vary significantly across many factors, including patient age,
genetic background, living environment, diet, and other factors.
These factors cannot be strictly controlled as they are in experi-
ments using a mouse model. Therefore, it is common to observe
fewer overlaps of transcriptomic datasets published by different
groups. The actual overlapped genes in most analyses of this
study should be more than it appeared.
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Fig. 7 Levels of maternal transcripts in development-arrested human zygotes. a and b RT-qPCR results showing the mRNA levels of selected M-decay
transcripts in arrested zygotes derived from TUBB8-mutated and unid-patients 3 days after IVF. c and d RT-qPCR results showing the mRNA levels of
BTG4, CNOT7, and CNOT6L in arrested zygotes that were derived from TUBB8-mutated and unid-patients. Data are presented as mean values ± SEM.
P value by one-way ANOVA. n= 3 independent experiments.
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It is likely that, in addition to mRNA degradation, the maternal
proteins are also removed for embryo development42–44. The
results of our GO analyses suggest that the zygotes failed to
undergo normal M-decay of maternal mRNAs, which indicates
that the transcripts related to protein translation and mRNA

stability were enriched and may be the cause of over-translation
of the accumulated maternal mRNAs eventually leading to cell
division defects6,45. Similarly, due to ZGA defects, many of the
maternal mRNAs that were associated with the meiotic cell cycle
and that should have been degraded by the Z-decay pathway were
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accumulated, leading to embryonic developmental retardation at
the 8-cell stage.

It was unclear whether timely mRNA degradation occurs in
oocytes that are arrested in meiosis I or II due to spindle assembly
defects or whether M-decay depended on progression to meiosis
II or even meiosis exit after fertilization6. In previous studies, we
have performed experiments in mouse oocytes to address this
unanswered question. We artificially arrested the maturing
oocytes in meiosis I by treatment with nocodazole, which is a
widely used microtubule disruptor. We then detected the degra-
dation of selective mRNAs that should have been removed by M-

decay in these oocytes using RT-qPCR. The results showed that,
while the degradation of these mRNAs was impaired by M-decay-
associated genetic defects, they were not affected by nocodazole
treatment35. In this study, we further provided in vivo evidence
that M-decay in humans is not impaired by meiosis defects
caused by TUBB8 mutations. This is evidence that the delayed
mRNA decay observed in some arrested zygotes is primarily due
to a lack of M-decay factors, rather than secondary consequences
of cell cycle arrest.

In the Z-decay in Drosophila and zebrafish embryos, micro-
RNAs play an important role. Smaug, which is a master MZT

Fig. 8 Transcriptome changes in 8-cell stage-arrested human embryos. a The illustration shows the collection of human embryos to perform RNA-seq.
Zygotes obtained by IVF were cultured to the 8-cell or blastocyst stages. b Representative images of morphologically normal and 8-cell stage-arrested
embryos. Scale bars= 50 µm. c The PCA results of embryos at the indicated stages. Arrested 8-cell embryos that were derived from unidentified patients
were in vitro fertilized and cultured for 5 days before RNA isolation. 1–6, represent embryos from different unid-patients. All observed normal (n= 3) and
arrested embryos (n= 14) looked like this in three independently repeated observations. d and e are derived from unid-patients (#1,4–6) to that of normal
8-cell embryos. Transcripts decreased or increased by more than 2 folds d or 5 folds e in arrested embryos compared to normal embryos, which were
highlighted in blue or red, respectively. n, gene number; FC fold change. f Venn diagrams show the overlap of down-regulated transcripts in arrested
embryos and ZGA transcripts in normal embryos. P= 1e−410 by a two-tailed Student’s t-test. g Venn diagrams show the overlap of up-regulated
transcripts in arrested embryos, the degraded transcripts from the zygote stage to the 8-cell stage in normal embryos, and ZGA-dependent Z-decay
transcripts during normal MZT. P= 1e−14 by a two-tailed Student’s t-test. h A heatmap illustration shows differentially expressed transcripts in normal
and arrested embryos. Group A, transcripts that are degraded (fold change >2) during the zygote-to-8-cell transition in normal embryos, but that remained
stable in the arrested 8-cell embryos. Group B, transcripts that significantly increased (fold change > 2) from the zygote stage to the 8-cell stage in normal
embryos, though not in arrested 8-cell embryos. i and j Gene ontology analysis of the transcripts of Group A i and Group B j.
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regulator in Drosophila, is required for zygotic synthesis of the
miR-309 family of microRNAs, which targets several hundred
maternal transcripts for degradation during MZT46,47. Zebrafish
miR-430 is expressed at the onset of zygotic transcription and
facilitates the deadenylation and clearance of maternal mRNAs
during early embryogenesis48. However, it has also been reported
that microRNA function is globally suppressed in mouse oocytes
and early embryos49. Oocyte-specific deletion of Dgcr8, which
encodes a protein that is specifically required for microRNA
processing, does not affect the MZT in mice49. Thus, mRNAs of
certain early zygotic genes may be the major zygotic transcription
products that regulate Z-decay in mammals.

On the contrary, the involvement of de novo proteins trans-
lated from early zygotic transcripts in Z-decay is not clearly
described in all model systems. Our studies suggest that early

zygotic expression of Tead4 and Tut4/7 may be required for Z-
decay in both mice and humans. In 4-cell embryos derived from
oocyte-specific Yap1 knockout mice, maternal transcripts were
accumulated, particularly those that were destined to be removed
by the Z-decay pathway14,50. Similarly, in the arrested human
embryos, the decreased expression of these factors (BTG4,
CNOT7, TEAD4, TUT4/7) was closely associated with maternal
mRNA degradation defects, which suggests that the maternal
mRNA clearing pathway is highly conserved in vertebrate species.

Transcriptome analyses indicated that the Z-decay process is
largely completed by the 8-cell stage in human embryos18,28.
Different from its involvement in mice, zygotic transcription
plays a more important role in the Z-decay of human maternal
transcripts, probably due to a longer duration from ZGA to the
completion of Z-decay in humans compared to that in mice51. It

1.2 10

20

16

12

8

15

12

9

6

3

0

12

9

6

3

0

4

0

8

6

4

2

0

8

6

4

2

0

1.0

0.8

0.6

F
o

ld
 c

h
an

g
e

F
o

ld
 c

h
an

g
e

F
o

ld
 c

h
an

g
e

16

p = 0.7925

p = 0.00008

p = 0.00009

p = 0.000030

p = 0.0007

p = 0.00073

p = 0.0003

p = 0.0007

p = 0.00009

p=0.357

p = 0.643 p = 0.837

p = 0.0005
p = 0.0002

p = 0.0010

p = 0.657 p =0 .784

p = 0.00024

p = 0.00065 p = 0.000432

p = 0.00087

p = 0.00057

p = 0.0007

p = 0.0004
p = 0.00004

p = 0.00031

p = 0.00027

p = 0.775 p = 0.403

p = 0.0007

p = 0.0002

p = 0.00017

p=0.874

p=0.00014

p = 0.0046
p = 0.0009

p = 0.0057

p = 0.285 p = 0.432

p = 0.0002 p = 0.0010

p = 0.5905

12

8

4

0

F
o

ld
 c

h
an

g
e

16

12

8

4

0

F
o

ld
 c

h
an

g
e

16

12

8

4

0

F
o

ld
 c

h
an

g
e

F
o

ld
 c

h
an

g
e

F
o

ld
 c

h
an

g
e

F
o

ld
 c

h
an

g
e

F
o

ld
 c

h
an

g
e

0.4

0.2

0
1 2

no treatment +Verteporfin

no treatment

no tre
atment

+Verteporfin

no tre
atment

+Verteporfin

no tre
atment

+Verteporfin

no tre
atment

+Verteporfin

no tre
atment

+Verteporfin

no tre
atment

+Verteporfin

+Verteporfin no treatment +Verteporfin

no treatment +Verteporfin

no treatment +Verteporfin

no treatment +Verteporfin

no treatmenta d e

b

c

+Verteporfin

TUT4

TUT4 TUT7

TUT7

CENPJ

CNOT7
CNOT7

SUV39H2 SUV39H2

CENPJ

SKP1 SKP1

3 1 2 3 4

1 2 3 1 2 3 4 1 2 3 1 2 3 4

1 2 3 1 2 3 4

1 2 3 1 2 3 4

1 2 3 1 2 3 4

1.2

1.0

0.8

0.6

0.4

0.2

0

F
o

ld
 c

h
an

g
e

1.2

1.0

0.8

0.6

0.4

0.2

0

F
o

ld
 c

h
an

g
e

1.2

1.0

0.8

0.6

0.4

0.2

0

Fig. 10 Effect of YAP inhibitor verteporfin on human early embryo development. a Representative images of in vitro cultured human 8-cell embryos.
Zygotes with 3PN were cultured with or without the presence of verteporfin and collected at the 8-cell stage. Scale bar= 50 µm. All embryos (n= 4 for
each group) looked like this in three independently repeated experiments. b RT-qPCR results showing levels of TUT4 and TUT7 transcripts in the individual
8-cell embryos with or without verteporfin treatment. c One-way ANOVA test comparing TUT4/7 differences at the 8-cell stage between verteporfin-
treated and none-treated embryos. d RT-qPCR results showing levels of indicated transcripts in the individual 8-cell embryos with or without verteporfin
treatment. e One-way ANOVA test comparing differences of transcript levels at the 8-cell stage between verteporfin-treated and none-treated embryos. In
b–e, n= 3 independent experiments. Data are presented as mean values ± SEM. P by one-way ANOVA.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18680-6 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:4917 | https://doi.org/10.1038/s41467-020-18680-6 |www.nature.com/naturecommunications 13

www.nature.com/naturecommunications
www.nature.com/naturecommunications


has been noted in clinically assisted reproduction practices that
many poor-quality embryos or embryos derived from aged
oocytes were arrested at the 8~16-cell stage52–54. Therefore, the
maternal and zygotic components in the Z-decay pathway may be
key factors that determine the quality and developmental
potential of human embryos.

Methods
Human oocyte and early embryo collection. All of the oocytes and embryo were
obtained with signed informed consent by the donor couples. The ovaries were
stimulated using GnRH analogs combined with recombinant follicle stimulating
hormone (FSH). Oocytes were obtained through follicle puncture at 36 h after hCG
administration. The donated oocytes were randomly picked. The cumulus cells
around each oocyte were removed using hyaluronidase treatment. MII oocytes
were acquired from in vitro maturation of the immature (GV/MI) oocyte.

To collect early embryos, in vitro fertilized eggs were cultured until the 8-cell
stage using a G-1 (Vitrolife) human embryos culture medium. The G-2 (Vitrolife)
medium was used to culture the 8-cell embryos to the blastocyst stage. When
normal embryos developed to the 8-cell stage at day 3 after fertilization, the
embryos that were arrested at the 1-cell stage were collected. 8-cell embryos of the
control groups were from abnormal zygotes (3PN fertilization) and collected at day
3 after fertilization. The arrested 8-cell embryos that have no signs of degeneration
were collected at day 5 after fertilization. None of the donated oocytes were
fertilized for the purposes of this study.

In this study, 17 GV oocytes were acquired from 6 donors; 39 arrested zygotes
(3PN included) were acquired from 30 donors; and 23 arrested 8-cell embryos were
acquired from 30 donors. The experiments performed in this study were approved
and guided by the ethical committee of Guangdong Second Provincial General
Hospital (Research license YY-2018-009-01) and the Reproductive & Genetic
Hospital of CITIC-XIANGYA (Research license LL-SC-2019-030).

Animals. All the used mouse strains were of a C57B6 background. Wild type
C57BL6 mice were obtained from the Zhejiang Academy of Medical Science,
China. The experimental protocols that involved mice were approved by the
Zhejiang University Institutional Animal Care and Research Committee (Approval
# ZJU20170014), and mouse care and use was performed in accordance with the
relevant guidelines and regulations.

Mouse oocyte culture. Female mice (21–23 days old) were injected with 5 IU of
PMSG and were humanely euthanized after 44 h. Oocytes at the GV stage were
harvested in M2 medium (M7167; Sigma-Aldrich) and cultured in mini-drops of
M16 medium (M7292; Sigma-Aldrich) that were covered with mineral oil (M5310;
Sigma-Aldrich) at 37 °C in a 5% CO2 atmosphere.

Microinjection of mouse oocyte. All injections were performed using an
Eppendorf transferman NK2 micromanipulator. GV oocytes were incubated in M2
medium with 2 µM milrinone to inhibit spontaneous GVBD and microinjected as
5–10 pL samples per zygote. The concentration of all microinjected RNAs was then
adjusted to 1000 ng/µl. After microinjection, oocytes were washed and cultured in
M16 medium at 37 °C with 5% CO2.

Immunofluorescence. Oocytes and embryos were fixed in 4% paraformaldehyde
in phosphate-buffered saline (PBS) for 30 min and permeabilized in PBS con-
taining 0.3% Triton X-100 for 30 min. After being blocked with 1% bovine serum
albumin in PBS, the oocytes were incubated with primary antibodies for 1 h and
sequentially labeled with Alexa Fluor Cy3-conjugated or 488-conjugated secondary
antibodies and 4ʹ,6-diamidino-2-phenylindole (DAPI) for 30 min. A confocal
microscope was used to image oocytes.

In vitro transcription and preparation of mRNAs for microinjection. To prepare
mRNAs for microinjection, expression vectors were linearized and subjected to
phenol/chloroform extraction and ethanol precipitation. Linearized DNAs were
in vitro transcribed using the SP6 message mMACHINE Kit (Life, AM1340).
Transcribed mRNAs were then added to poly (A) tails (~200–250 bp) using the
mMACHINE Kit (Life, AM1350), recovered by lithium chloride precipitation,
cleaned by ethanol, and lastly resuspended in nuclease-free water.

Single cell RNA-Seq library preparation. To remove the zona pellucida, the
embryos were exposed to acidic Tyrode’s solution (pH 2.5, Sigma, Cat#T1788) for
3–5 s and then washed thoroughly in PBS containing 0.5% bovine serum albumin
(BSA) (Sigma, Cat#A1933). Single cells were placed into individual tubes that
contained 4 μl of lysis buffer (1.96 μl of nuclease-free water, 1 μl of 10 mM dNTP
mix (NEB, Cat#N0447), 0.1 μl of 40 U/ml RNase-inhibitor (NEB, Cat#M0314L),
0.04 μl of 10% Triton X-100 (Sigma, Cat#T8787), and 1 μl of 10 mM modified
oligo-dT primer (5ʹ-AACGCAGAGTACT30VN-3ʹ)). After 3 min of cell lysis at
72 °C, Smart-seq2 reverse transcription reactions were performed. After the first-

strand reaction, the cDNA was amplified using a limited number of cycles (~13
cycles). Sequencing libraries were constructed from 500 pg of amplified cDNA
using the TruePrep DNA Library Prep Kit V2 for Illumina (Vazyme, TD503)
according to the manufacturer’s instructions. Barcoded libraries were pooled and
sequenced on the Illumina HiSeq X Ten platform in the 150 bp paired-end mode.

RNA seq data analysis. All the raw reads were first preprocessed using Trim-
momatic (v0.35)55 to remove sequencing adapters, trim low-quality bases from
both read ends (with the parameters LEADING:3 TRAILING:3 SLI-
DINGWINDOW:4:15), and remove reads <36 bp in length. The clean reads were
then mapped to the human reference genome of GRCh38 (without masking
repeats) using STAR aligner (v2.5.2b)56. Ensemble genes were calculated using
HTSeq (v0.6.1p1)57. The expression levels of each gene were quantified using
normalized FPKM. Two-tailed Student’s t-test was used to determine statistical
significance of differences between samples. PCA clustering for different embryos
was performed using the R prcomp function. Summaries of the RNA-seq data
generated in this study are shown in Supplementary Tables 5 and 6.

RNA isolation and real-time RT-PCR. Oocytes or embryos were collected and
lysed in 2 μl of lysis buffer (0.2% Triton X-100 and 4 IU RNase inhibitor) followed
by reverse transcription with primer transcript II reverse transcriptase (Takara),
according to the manufacturer’s instructions. A real-time RT-PCR analysis was
performed using the Power SYBR Green PCR Master Mix (Applied Biosystems,
Life technologies) and an Applied Biosystems 7500 Real-Time PCR System. The
respective cycle threshold (Ct) values were obtained, and relative mRNA levels
were calculated by normalization to the endogenous Gapdh mRNA levels (internal
control) using Microsoft EXCEL®. The gene expression levels were calculated by
2ΔCt (2ΔCt (genes−Gapdh)). The relative transcript levels of the samples were com-
pared to those of controls, and fold changes were determined. For each experiment,
qPCR was performed in triplicate. Primer sequences are listed in Supplementary
Table 7.

Maternal transcript clustering. The data was extracted from previously published
dataset (GV data from GSE107746 and others from GSE36552; The datasets of α-
amanitin treatment are from GSE101571). Maternal mRNAs with reliable sequence
annotations and FPKM of >2 at the GV stage were retained for further analysis.
Expression levels of each gene were added to one and then transformed by log2 in
the following analysis. Cluster I–IV consisted of genes that satisfy the following
formulas:

Cluster I: Expression (GV) > Expression (zygote)+ 1; Expression (zygote) ≤
Expression (8-cell)+1.

Cluster II: Expression (GV) ≤ Expression (zygote)+1; Expression (GV) >
Expression (zygote)–1; Expression (zygote)>Expression (8-cell)+1.

Cluster III: Expression (GV) > Expression (zygote)+1; Expression (zygote) >
Expression (8-cell)+1.

Cluster IV: Expression (GV) ≤ Expression (zygote)+1; Expression (GV) >
Expression (zygote)–1; Expression (zygote) ≤ Expression (8-cell)+1; Expression
(zygote)>Expression (8-cell)–1.

3′-UTR analysis. The 3′-UTR sequences of humans (grch37) were extracted from
the UCSC Table Browser. The conserved sequences 5ʹ-UUUUAU/UUUUAAU-3ʹ
and 5ʹ-AAUAAA/AUUAAA-3ʹ were used to identify CPEs and PASs, respectively.
The lengths of 3ʹ-UTRs and numbers of CPEs and PASs in 3ʹ-UTRs were calculated
using an in-house Python script.

Statistical analysis. Results were presented as mean ± SEM. Most experiments
included at least three samples and were repeated at least three times. The results
for the two experimental groups were compared using two-tailed unpaired Stu-
dent’s t-tests and one way ANOVA. Values were considered statistically significant
at P < 0.05, P < 0.01, and P < 0.001.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
RNA-seq data have been deposited in the NCBI Gene Expression Omnibus database
under accession code PRJNA603589. Source data are provided with this paper.
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