Representative publications (* denotes corresponding author)
1. Zhang, X.#, Zhu, T.#, Li X.#, Zhao, H., Lin S., Huang, J., Yang, B.*, Guo, X.* DNA damage-induced proteasome phosphorylation controls substrate recognition and facilitates DNA repair. Proc Natl Acad Sci U S A. 2024 Aug 27;121(35)
2. Zhang, R.#, Pan, S. #, Zheng, S. #, Liao, Q., Jiang Z., Wang, D., Li, X., Hu, A., Li, X., Zhu, Y., Shen, X., Lei, J., Zhong, S., Zhang, X., Huang, L., Wang, X., Huang, L., Shen, L., Song, B.-L., Zhao, J., Wang, Z., Yang, B.*, and Guo, X.* Lipid-anchored Proteasomes Control Membrane Protein Homeostasis. Science Advances, 2023 Dec;9(48):eadj4605.
3. Wang, G. #, Lei, J. #, Wang, Y., Yu, J., He, Y., Zhao, W., Hu, Z., Xu, Z., Jin, Y., Gu, Y., Guo, X., Yang, B., Gao, Z. and Wang, Z.* The ZSWIM8 ubiquitin ligase regulates neurodevelopment by guarding the protein quality of intrinsically disordered Dab1. Cereb Cortex, 2023. 33:3866-3881
4. Kong, X., Shu, X., Wang, J., Liu, D., Ni, Y., Zhao, W., Wang, L., Gao, Z., Chen, J., Yang, B.*, Guo, X.*, and Wang, Z.* Fine-tuning of mTOR signaling by the UBE4B-KLHL22 E3 ubiquitin ligase cascade in brain development. Development, 2022. 149:dev201286.
5. Guo, X.* Localized Proteasomal Degradation: From the Nucleus to Cell Periphery. Biomolecules, 2022.12:229-244.
6. Duan, J., Li, W., Shu, X., Yang, B., He, X., and Guo, X.* Conserved mitotic phosphorylation of a proteasome subunit regulates cell proliferation. Cells, 2021. 10:3075.
7. Shi, L.#, Liu, B.#, Shen, D.-d., Yan, P., Zhang, Y., Tian, Y., Hou, L., Jiang, G., Zhu, Y., Liang, Y., Liang, X., Shen, B., Yu, H., Zhang, Y., Wang, Y.*, Guo, X.*, and Cai, X.*, A tumor-suppressive circular RNA mediates uncanonical integrin degradation by the proteasome in liver cancer.Science Advances, 2021. 7(13): eabe5043.
8. Chen, L. #, Zhang, Y. #, Shu, X., Chen, Q., Wei, T., Wang, H., Wang, X., Wu, Q., Zhang, X., Liu, X., Zheng, S., Huang, L., Xiao, J., Jiang, C., Yang, B., Wang, Z.*, and Guo, X.*, Proteasome regulation by reversible tyrosine phosphorylation at the membrane.Oncogene, 2021. 40:1942-1956.
9. Liu, X. #, Xiao, W. #, Zhang, Y., Wiley, S.E., Zuo, T., Zheng, Y., Chen, N., Chen, L., Wang, X., Zheng, Y., Huang, L., Lin, S., Murphy, A.N., Dixon, J.E., Xu, P., and Guo, X.*, Reversible phosphorylation of Rpn1 regulates 26S proteasome assembly and function.Proc Natl Acad Sci U S A, 2020. 117(1): 328-336.
10. Fan, K., Wang, F., Li, Y., Chen, L., Gao, Z., Zhang, Y., Duan, J.Y., Huang, T., Zhong, J., Liu, R.B., Mao, X., Fan, H., Guo, X.*, and Jin, J.*, CRL4DCAF2 is required for mature T-cell expansion via Aurora B-regulated proteasome activity.J Autoimmun, 2019. 96: 74-85.
11. Banerjee, S. #, Ji, C. #, Mayfield, J.E., Goel, A., Xiao, J., Dixon, J.E.*, and Guo, X.*, Ancient drug curcumin impedes 26S proteasome activity by direct inhibition of dual-specificity tyrosine-regulated kinase 2.Proc Natl Acad Sci U S A, 2018. 115(32): 8155-8160.
12. Guo, X.*, Huang, X., and Chen, M.J., Reversible phosphorylation of the 26S proteasome.Protein Cell, 2017. 8(4): 255-272.
13. Chen, Y., Zhang, Y., and Guo, X.*, Proteasome dysregulation in human cancer: implications for clinical therapies.Cancer Metastasis Rev, 2017. 36(4): 703-716.
14. Guo, X.*, Wang, X., Wang, Z., Banerjee, S., Yang, J., Huang, L., and Dixon, J.E.*, Site-specific proteasome phosphorylation controls cell proliferation and tumorigenesis.Nat Cell Biol, 2016. 18(2): 202-212.
15. Guo, X.* and Dixon, J.E.*, The 26S proteasome: A cell cycle regulator regulated by cell cycle.Cell Cycle, 2016. 15(7): 875-876.
16. Guo, X., Engel, J.L., Xiao, J., Tagliabracci, V.S., Wang, X., Huang, L., and Dixon, J.E.*, UBLCP1 is a 26S proteasome phosphatase that regulates nuclear proteasome activity.Proc Natl Acad Sci U S A, 2011. 108(46): 18649-18654.
Other publications
16. Wei, T. #, Wang, J. #, Liang, R. #, Chen, W., Chen, Y., Ma, M., He, A., Du, Y., Zhou, W., Zhang, Z., Zeng, X., Wang, C., Lu, J., Guo, X., Chen, X.W., Wang, Y., Tian, R., Xiao, J., and Lei, X. Selective inhibition reveals the regulatory function of DYRK2 in protein synthesis and calcium entry. Elife, 2022.11:e77696.
17. Wei, X., Zhao, L., Ren, R., Ji, F., Xue, S., Zhang, J., Liu, Z., Ma, Z., Wang, X.W., Wong, L., Liu, N., Shi, J., Guo, X., Roessler, S., Zheng, X., Ji, J.. MiR-125b Loss Activated HIF1α/pAKT Loop, Leading to Trans-Arterial Chemoembolization Resistance in Hepatocellular Carcinoma. Hepatology, 2021. 73(4):1381-1398
18. Yan, F., Huang, C., Wang, X., Tan, J., Cheng, S., Wan, M., Wang, Z., Wang, S., Luo, S., Li, A., Guo, X., Feng, M., Liu, X., Zhu, Y., Zhou, Y. Threonine ADP-Ribosylation of Ubiquitin by a Bacterial Effector Family Blocks Host Ubiquitination. Mol Cell, 2020. 78(4):641-652.
19. Ma, XJ., Chen, X., Jin, Y., Ge, WY., Wang, WY., Kong, LH., Ji, JF., Guo, X., Huang, J., Feng, XH,, Fu, JF., Zhu, SY. Small molecules promote CRISPR-Cpf1-mediated genome editing in human pluripotent stem cells. Nat Comm, 2018. 9:1303.
20. Zhang, H., Zhu, Q., Cui, J., Wang, Y., Chen, M. J., Guo, X., Tagliabracci, V. S., Dixon, J. E. & Xiao, J. Structure and evolution of the Fam20 kinases. Nat Comm, 2018. 9:1218.
21. Wang, X., Cimermancic, P., Yu, C., Schweitzer, A., Chopra, N., Engel, J.L., Greenberg, C., Huszagh, A.S., Beck, F., Sakata, E., Yang, Y., Novitsky, E.J., Leitner, A., Nanni, P., Kahraman, A., Guo, X., Dixon, J.E., Rychnovsky, S.D., Aebersold, R., Baumeister, W., Sali, A., and Huang, L. Molecular Details Underlying Dynamic Structures and Regulation of the Human 26S Proteasome. Mol Cell Proteomics, 2017. 16:840-854.
22. He, Y., Guo, X., Yu, Z.-H., Wu, L., Gunawan, A.M., Zhang, Y., Dixon, J.E., and Zhang, Z.-Y. A potent and selective inhibitor for the UBLCP1 proteasome phosphatase. Bioorg Med Chem, 2015. 23:2798–2809.
23. Wang, Z., Hou, Y#., Guo, X.#, van der Voet, M., Boxem, M., Dixon, J.E., Chisholm, A.D. and Jin, Y. The EBAX-type Cullin-RING E3 Ligase and Hsp90 Guard the Protein Quality of the SAX-3/Robo Receptor in Developing Neurons. Neuron, 2013. 79:903–916. #Equal contribution
24. Guo, X.*, and Wang, X.-F*. A P(E)RM(I)T for BMP Signaling. Mol Cell, 2013. 51:1-2.
25. Guo, X.*, and Wang, X.-F*. A Mediator Lost in the War on Cancer. Cell, 2012. 151:927-929.
26. Guo, X.*, and Wang X.-F*. New secrets behind bone metastasis. Cell Res, 2012. 22:1309-1311.
27. Guo, X., Wang X.-F. Signaling cross-talk between TGF-β/BMP and other pathways. Cell Res, 2009. 19:71-88.
28. Guo, X.#, Waddell, D. S.#, Wang, W., Wang, Z., Liberati, N. T., Yong, S., Liu X. and Wang X.-F. Ligand-Dependent Ubiquitination of Smad3 Is Regulated by Casein Kinase 1 gamma 2 (CKIγ2), An Inhibitor of TGF-β Signaling. Oncogene, 2008. 27:7235–7247. #Equal contribution
29. Lee Y.-S., Lim K.-H., Guo, X., Kawaguchi Y., Gao Y., Barrientos T., Ordentlich P., Wang X.-F., Counter C. and Yao T.-P. The cytoplasmic deacetylase HDAC6 is required for efficient oncogenic tumorigenesis. Cancer Res, 2008. 68:7561-7569.
30. Guo, X., Ramirez, A., Waddell, D. S., Li, Z., Liu, X., and Wang, X.-F. Axin and GSK3-β control Smad3 protein stability and modulate TGF-β signaling. Genes & Dev, 2008. 22:106-120.
31. Hjelmeland, A. B., Schilling, S. H.,Guo, X., Quarles, D., and Wang, X.-F. Loss of Smad3-Mediated Negative Regulation of Runx2 Activity Leads to an Alteration in Cell Fate Determination. Mol Cell Biol, 2005. 25:9460-9468.
32. Waddell, D. S., Liberati, N. T., Guo, X., Frederick, J. P., and Wang, X.-F. Casein Kinase Iε Plays a Functional Role in the Transforming Growth Factor-β Signaling Pathway. J. Biol Chem, 2004. 279:29236-29246.
33. Shao, R., and Guo, X. Human microvascular endothelial cells immortalized with human telomerase catalytic protein: a model for the study of in vitro angiogenesis. Biochem Biophys Res Comm, 2004. 321:788-794.
34. Zhou, C., Wen, Z.-X., Wang, Z.-P., Guo, X., Shi, D.-M., Zuo, H.-C., and Xie, Z.-P. Green fluorescent protein-labeled mapping of neural stem cells migrating towards damaged areas in the adult central nervous system. Cell Biol Inter, 2003. 27:943-945.